	QFO-AP-VA-008
	رمز النموذج :
	اسم النموذج : خطة المادة الدراسية
	[image: image1.png]

جامعة فيلادلفيا
Philadelphia University

	2
	رقم الإصدار: (Rev)
	الجهة المصدرة: نائب الرئيس للشؤون الأكاديمية
	

	4-5-2021
	تاريخ الإصدار:
	الجهة المدققة : اللجنة العليا لضمان الجودة
	

	4
	عدد صفحات النموذج :
	
	

	Course code: 750113
	Course Title:

Programming Fundamentals(1)

	Course prerequisite (s) and/or corequisite(s):
	Course Level: 1

	Credit hours: 3
	Lecture Time:

	E

C

DR

FR

UR

	Academic Staff Specifics

	E-mail Address
	Office Hours
	Office No. and Location
	Rank
	Name

	elseidi@philadelphia.edu.jo

	Sun,Tue:11:00-11:30
Mon,Wen:9:45- 11:15
	IT
Office:319
	Assistant Professor
	Eman ALsaidi

The Learning Style Used in Teaching the Course
	The Learning Style

	 Blended Learning

	Electronic Learning

	Face-to-Face Learning

	Percentage
	Blended
	Electronic
	Face-to-Face

	
	
	
	100%

Course/Module Description:

This module focuses on problem solving strategies and the use of algorithmic language to describe such problem solving. It introduces the principles of procedural programming, data types, control structures, data structures and functions, data representation on the machine level. Various problems are considered to be solved using C-like procedural programming language.

Course/Module Objectives:

This module aims to introduce computer programming and emphasis in problem solving on the fundamentals of structured design using the principles of Top Down problem solving strategy (divide and conquer). This includes development, testing, implementation, documentation.

The module also aims to explore the logic of programming via the algorithm concepts and implement them in programming structures including functions, arrays, and pointers.
Course/ module components

· Textbook:
- D.S. Malik , Thomson, C++ Programming: From Problem Analysis to Program Design, 8th Edition, Course Technology, 2018.
· Supporting material(s): Lectures handouts
Introduction to Computer Science and Programming (Spring 2011) (MIT)

Introduction to C++ (MIT)
Teaching methods:
Duration: 16 weeks, 80 hours in total

Lectures: 32 hours (2 hours per week),

Tutorials: 16 hours (1 per week),

Laboratories: 32 hours, 2 per week

Learning outcomes
A- Knowledge and understanding

 A2. Know & understand a wide range of principles and tools available to the software developer, such as design methodologies, choice of algorithm, language, software libraries and user interface technique:

A4. Know & understand a wide range of software and hardware used in development of computer systems
A5. Know & understand the professional and ethical responsibilities of the practising computer professional including understanding the need for quality, security, and computer ethics.
B- Intellectual skills (thinking and analysis).
B1. Analyze a wide range of problems and provide solutions through suitable algorithms, structures, diagrams, and other appropriate methods
 B4. Practice self learning by using the e-courses
C- Practical skills
C3. Work effectively with and for others.
C4. Strike the balance between self-reliance and seeking help when necessary in new situations
C5. Display personal responsibility by working to multiple deadlines in complex activities
D- Transferable Skills
D2. Prepare and deliver coherent and structured verbal and written technical reports.
D4. Use the scientific literature effectively and make discriminating use of Web resources
D5. Design, write, and debug computer programs in appropriate languages
Learning outcomes achievement
· Development: A2, A4, and A5 are developed through the lectures and laboratory sessions.
B1, D5, C3, and C4 are developed trough Tutorials and Lab sessions,

B4, D2, D4, D5, and C5 are developed through Homework

· Assessment : A2, A4, A5, B1, D5, and C4 and are assessed through Quizzes, written exams, and Practical Works Exams.
B4, D2, D4, D5, and C5 are assessed through Homework Exam.
Assessment instruments

	Allocation of Marks

	Mark
	Assessment Instruments

	30%
	Mid Exam

	40%
	Final examination

	30%
	Lab works, Quizzes, and tutorial contributions

	100%
	Total

Course/Module Academic Calendar

	Week
	Basic and support material to be covered
	Homework/reports and their due dates

	(1)
	Problem Solving: process, Analyze (requirement, Design algorithm, Tracing algorithm, Example, Design problems) Tutorial 1
	Lab work #1

(Get started with C++ language environment program editing, compiling, executing, debugging)

	(2)
	Problem Analysis: Algorithm discovery, Algorithm design strategies, Stepwise refinement, Control requirements, Implementing algorithm, Conclusion Tutorial 2
	Lab work #2

	(3)
	Data Definition Structures: Types, constants, variables, Expressions: Arithmetic, Logical; Precedence rules; Tutorial 3
	Lab work #3

	(4)
	Control Structures: Sequencing; Input and output statements; Assignment statement; Tutorial 4
	Lab work #4

	(5)
	Control Structures: Selection: one-way (if .. then), two-way (if .. then .. else), multiple (switch); Tutorial 5
	Lab work #5

	(6)
	Control Structures: Repetition (counter-controlled loop); Tutorial 6
	Lab work #6

	(7)

First examination
	Control Structures: Repetition (Conditional Loop); Tutorial 7
	Lab work #7

	(8)
	Control Structures: Nested Loops, Break and Continue Tutorial 8
	Lab work #8

	(9)
	Control Structures: Combination; Tutorial 9
	Lab work #9

	(10)
	Functions: Parameters definition and passing (functions depth look); prototypes; Tutorial 10
	Lab work #10

	(11)
	Functions: Parameters definition and passing (Scope: local and global variables), static variables; Tutorial 11
	Lab work #11

	(12)

Second examination
	Pointers; Tutorial 12
	Lab work #12

	(13)
	Data Structures: One dimensional arrays; Tutorial 13
	Lab work #13

	(14)
	Data Structures: Two dimensional arrays; Tutorial 14
	Lab work #14

	(15)
	Data Structures: Combination (Array + Functions + Pointer) Tutorial 15
	Lab work #15

	(16)

Final Examination
	Review and final Exam
	Lab work #16

Expected workload:
On average students need to spend 3 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Module references

Students will be expected to give the same attention to these references as given to the Module textbook(s)

1. P. Deitel & H. Deitel, C++ How to program, Pearson Education Limited, 2013.
2. Malik, D. S., C++ Programming: Program Design including Data Structures, MA Course Technology, 2009
3. Friedman Frank and Koffman Elliot B., "Problem Solving, Abstraction and Design using C++", Pearson Education , 2011.
4. A. Lambert Kenneth and Nance Douglas W., "Understanding Programming and Problem Solving With C++", PWS Publishing Company, Fourth Edition. 1996

5. Forouzan, B. A. & R. F. Gilberg. "Computer Science: A Structured Programming Approach using C", Second Edition, Pacific Grove, CA: Brooks/Cole, 2001
6. Bruce Eckel, "Thinking in C++", Second Edition, Prentice Hall, 2000.

7. Herbert Schildt, "Teach Yourself C++", Third Edition, McGraw-Hill. 1998.
8. Lospinoso, J., C++ Crash Course: A Fast-Paced Introduction, No Starch Press; Illustrated Edition, 2019

9. Code Quickly, Learn C++ Quickly: A Complete Beginner’s Guide to Learning C++, Even If You’re New to Programming (Crash Course With Hands-On Project) , Drip Digital, 2020

Website(s):
 www.cee.hw.zc.uk/~pjbk/pathways/cpp1/cpp1.html
 www.edm2.com/0507/introcpp1.html
 www.doc.ic.ac.uk/~wjk/C++intro
 www.cprogramming.com/tutorial.html
 www.cs.umd.edu/users/cml/cstyle/ellemtel-rules.html
 www.deakin.edu.au/~agoodman/Ctutorial.html
 www.tldp.org/howto/c++programming.howto.html
 www.vb-bookmark.com/cpptutorial.html
Documentation for Programs:

(All programming assignments must include at least the following comment lines)

/*TASK:
Identify what the program will accomplish
*/
/*
*/
/*WRITTEN BY:

*/
/*
*/
/*DATE:
List creation & modification dates
*/
/*
*/
/*VARIABLES:
List and give what each represents
*/
/*

*/
/*INPUT:
Identify the input parameters: Give examples
*/
/*
*/
/*OUTPUT:
Identify the expected output: Give examples
*/
/*
*/

/*ALGORITHM:
Briefly describe the algorithm used*/

#include <stdio.h>

main ()

{ … }

(If your program includes any function modules, each function needs to be documented)

/*TASK:
Identify what the function accomplishes
*/
/*
*/
/*DATE:
List creation and modification dates
*/
/*
*/
/*WRITTEN BY:

*/
/*
 */
/*VARIABLES:
List names and what each represents
*/
/*
*/
/*INPUT:
Identify the input parameters, if any. Give examples
*/
/*
 */
/*OUTPUT:
Identify the output. Give examples
*/
/*
 */
/*ALGORITHM:
Briefly describe the algorithm used
*/
 int function1()

 { … }

PAGE
5

